Dynamic filling index: a novel parameter to monitor circulatory filling during minimized extracorporeal bypass.
نویسندگان
چکیده
OBJECTIVE To evaluate the dynamic filling index, a novel parameter to monitor changes in venous return and drainable volume, in circulatory assisted patients. Minimized extracorporeal bypass systems lack volume buffering capacity, demanding tight control of drainable volume to maintain bypass flow. Therefore, with patients on minimized bypass quantitative assessment of venous drainable volume is crucial. METHODS In seven patients undergoing coronary artery bypass grafting using minimized extracorporeal bypass we utilized luxation of the heart to induce a reduction in venous return. The speed of the centrifugal pump was transiently and periodically reduced to monitor resultant changes in bypass flow. The dynamic filling index, a measure of drainable volume, was calculated as Deltaflow/Deltaspeed. RESULTS With luxation, the dynamic filling index was significantly reduced (from 2.4 +/- 0.2 to 2.0 +/- 0.2 ml/rotation, p = 0.001; 95% confidence interval of mean difference: 0.23-0.46 ml/rotation), whereas routinely recorded parameters, like bypass flow, pump inlet and arterial line pressure, did not change significantly. The intra-measurement reproducibility for the dynamic filling index was 0.5 ml/rotation (20% of the mean), suggesting good potential for this parameter to monitor on-pump venous return in patients. CONCLUSION The dynamic filling index can detect small changes in venous return and drainable volume which remain unrevealed by routinely recorded parameters. This index could be a valuable tool to monitor and control circulatory filling in individual patients supported by minimized extracorporeal bypass.
منابع مشابه
Quantitative assessment of cardiac load-responsiveness during extracorporeal life support: case and rationale
We describe a case of a patient assisted by extracorporeal life support, in which we obtained the dynamic filling index, a measure for venous volume during extracorporeal life support, and used this index to assess cardiac load-responsiveness during acute reloading. While reloading, the obtained findings on cardiac pump function by the dynamic filling index were supported by trans-esophageal ec...
متن کاملEffect of closed minimized cardiopulmonary bypass on cerebral tissue oxygenation and microembolization.
OBJECTIVE Coronary artery bypass grafting with cardiopulmonary bypass carries a risk for neurologic complications because of cerebral hypoperfusion and microembolization. The basic goals of a novel closed minimized extracorporeal circulation are to prevent excessive hemodilution and to avoid blood-air interface. The aim of this prospective randomized study was to determine the effect of using t...
متن کاملEvaluation of hemodynamic and regional tissue perfusion effects of minimized extracorporeal circulation (MECC).
Minimized extracorporeal circulation (MECC, Maquet, Cardiopulmonary AG, Hirrlingen, Germany) is an established procedure to perform coronary revascularization. Studies showed positive effects of MECC compared to conventional cardiopulmonary bypass (CCPB) procedures in terms of transfusion requirements, less inflammation reactions, and neurological impairments. Recent retrospective studies showe...
متن کاملVolume-Filling Effects on Sloshing Frequency in Simplified and Explicit Dynamic Finite Element Models of Tank Wagons During Braking and Turning
Numerical analysis of fluid sloshing in tank wagons is amongst essential research ideas that are focused by railway engineers. The free surface of fluid becomes unstable and turns into a dynamic complex non-linear problem for fluid-structure interaction (FSI). In this paper, initially, the dynamic response of the tank, including lateral force analysis and pressure distribution during braking, i...
متن کاملMATHEMATICAL MODELLING OF THE EFFECT OF FOAM DEGRADATION ON MOULD FILLING IN THE GREY IRON EPC PROCESS
In this investigation a new model was developed to calculate gas pressure at the melt/foam interface (Gap) resulting from foam degradation during mould filling in the Lost Foam Casting (LFC) process. Different aspects of the process, such as foam degradation, gas elimination, transient mass, heat transfer, and permeability of the refractory coating were incorporated into this model. A Computati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2009